Skip to content

Seq-Scope Starter Tutorial

Input Data

This tutorial uses an example SGE from mouse hippocampus, extracted via spatial masking from a Seq-Scope coronal brain slice.

File Format

Actual input formats are platform-dependent. Please refer to the Vignettes for detailed input specifications by each platform.

SeqScope provides SGE with three files:

barcodes.tsv.gz – spatial barcode metadata
1
2
3
AAAACAAAAACCTTCTTCGGACACTGGTCT  1   20  1   1   295288  1422349 0,1,0,0,0
AAAACAAAAATCCTGTTATACATGCCATGG  2   45  1   1   1745544 1110720 2,2,1,0,1
AAAACAAAACACGGGAAAAAACTATAGGTG  3   58  1   1   887244  250820  7,7,5,0,1
  • Column 1: Sorted spatial barcodes
  • Column 2: 1-based integer index of spatial barcodes, used in matrix.mtx.gz
  • Column 3: 1-based integer index from the full barcode that is in the STARsolo output
  • Column 4: Lane ID (fixed as 1)
  • Column 5: Tile ID (fixed as 1)
  • Column 6: X-coordinates
  • Column 7: Y-coordinates
  • Column 8: Five comma-separated numbers denote the count per spatial barcode for "Gene", "GeneFull", "Spliced", "Unspliced", and "Ambiguous".
features.tsv.gz – feature metadata
1
2
3
ENSMUSG00000100764  Gm29155 1   1,1,1,0,0
ENSMUSG00000100635  Gm29157 2   0,0,0,0,0
ENSMUSG00000100480  Gm29156 3   0,0,0,0,0
  • Column 1: Feature ID
  • Column 2: Feature symbol
  • Column 3: 1-based integer index of genes, used in matrix.mtx.gz
  • Column 4: Five comma-separated numbers denote the count per gene "Gene", "GeneFull", "Spliced", "Unspliced", and "Ambiguous".
matrix.mtx.gz – expression count matrix
1
2
3
4
5
%%MatrixMarket matrix coordinate integer general
%
33989 2928173 5404336
2487 1 0 1 0 0 0
5104 2 1 1 0 0 1
  • Header: Initial lines form the header, declaring the matrix's adherence to the Market Matrix (MTX) format, outlining its traits. This may include comments (lines beginning with %) for extra metadata, all marked by a “%”.
  • Dimensions: Following the header, the first line details the matrix dimensions: the count of rows (features), columns (barcodes), and non-zero entries.
  • Data Entries: Post-dimensions, subsequent lines enumerate non-zero entries in seven columns: row index (feature index), column index (barcode index), and five values (expression levels) corresponds to "Gene", "GeneFull", "Spliced", "Unspliced", and "Ambiguous".
    • "Gene": represents unique, confidently mapped transcript count ("gene name"-based);
    • "GeneFull": denotes total transcript count assigned to gene (includes ambiguities).

Data Access

The example data is hosted on Zenedo (10.5281/zenodo.15701394).

Follow the commands below to download the example data.

1
2
3
4
work_dir=/path/to/work/directory
cd $work_dir
wget  https://zenodo.org/records/15701394/files/seqscope_starter.raw.tar.gz 
tar -zxvf seqscope_starter.raw.tar.gz 

Set Up the Environment

Define paths to all required binaries and resources, and target AWS S3 bucket. Optionally, specify a fixed color map for consistent rendering.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# ====
# Replace each placeholder with the actual path on your system.  
# ====
work_dir=/path/to/work/directory        # path to work directory that contains the downloaded input data
cd $work_dir

# Define paths to required binaries and resources
spatula=/path/to/spatula/binary         # path to spatula executable
punkst=/path/to/punkst/binary           # path to FICTURE2/punkst executable
tippecanoe=/path/to/tippecanoe/binary   # path to tippecanoe executable
pmtiles=/path/to/pmtiles/binary         # path to pmtiles executable
aws=/path/to/aws/cli/binary             # path to AWS CLI binary

# (Optional) Define path to color map. 
cmap=/path/to/color/map                 # Path to the fixed color map for rendering. cartloader provides a fixed color map at cartloader/assets/fixed_color_map_256.tsv.

# AWS S3 target location for cartostore
AWS_BUCKET="EXAMPLE_AWS_BUCKET"         # replace EXAMPLE_AWS_BUCKET with your actual S3 bucket name

# Activate the bioconda environment
conda activate BIOENV_NAME              # replace BIOENV_NAME with your bioconda environment name

Define data ID and analysis parameters:

1
2
3
4
5
6
7
8
# Unique identifier for your dataset
DATA_ID="seqscope_hippo"                # change this to reflect your dataset name
PLATFORM="seqscope"                     # platform information
SCALE=1000                            # scale from coordinate to micrometer

# LDA parameters
train_width=18                           # define LDA training hexagon width (comma-separated if multiple widths are applied)
n_factor=6,12                            # define number of factors in LDA training (comma-separated if multiple n-factor are applied)

How to Define Scaling Factors for Seq-Scope

The latest SeqScope with an Illumina NovaSeq 6000 uses NovaScope pipeline to process sequencing data. NovaScope defaults to generate SGE at nanometer (nm) resolution, meaning each pixel corresponds to 1 nm.

Thus, use 1000 as scaling factor from coordinate to micrometer since 1000 nm = 1 µm.

SGE Format Conversion

Convert the raw input to the unified SGE format. See more details in SGE Format Conversion.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
cartloader sge_convert \
  --makefn sge_convert.mk \
  --platform ${PLATFORM} \
  --in-mex ./raw \
  --units-per-um ${SCALE} \
  --out-dir ./sge \
  --exclude-feature-regex '^(BLANK|NegCon|NegPrb)' \
  --sge-visual \
  --spatula ${spatula} \
  --n-jobs 10
Parameter Required Type Description
--platform required string Platform (options: "10x_visium_hd", "seqscope", "10x_xenium", "bgi_stereoseq", "cosmx_smi", "vizgen_merscope", "pixel_seq", "generic")
--in-mex required string Path to the input MEX directory containing gene × barcode matrix
--units-per-um required float Scale to convert coordinates to microns (default: 1.0)
--out-dir required string Output directory for the converted SGE files
--makefn string File name for the generated Makefile (default: sge_convert.mk)
--exclude-feature-regex regex Pattern to exclude control features
--sge-visual flag Enable SGE visualization step (generates diagnostic image) (default: FALSE)
--spatula string Path to the spatula binary (default: spatula)
--n-jobs int Number of parallel jobs for processing (default: 1)

FICTURE analysis

Compute spatial factors using punkst (FICTURE2 mode). See more details in Reference page.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
cartloader run_ficture2 \
  --makefn run_ficture2.mk \
  --main \
  --in-transcript ./sge/transcripts.unsorted.tsv.gz \
  --in-feature ./sge/feature.clean.tsv.gz \
  --in-minmax ./sge/coordinate_minmax.tsv \
  --cmap-file ${cmap} \
  --exclude-feature-regex '^(mt-.*$|Gm\d+$)' \
  --out-dir ./ficture2 \
  --width ${train_width} \
  --n-factor ${n_factor} \
  --spatula ${spatula} \
  --ficture2 ${punkst} \
  --n-jobs 10 \
  --threads 10
Parameter Required Type Description
--main required 1 flag Enable cartloader to run all five steps
--in-transcript required string Path to input transcript-level SGE file
--out-dir required string Path to output directory
--width required int or comma-separated list LDA training hexagon width(s)
--n-factor required int or comma-separated list Number of LDA factors
--makefn string File name for the generated Makefile (default: run_ficture2.mk )
--in-feature string Path to input feature file
--in-minmax string Path to input coordinate min/max file
--cmap-file string Path to color map file
--exclude-feature-regex regex Pattern to exclude features
--spatula string Path to the spatula binary (default: spatula)
--ficture2 string Path to the punkst directory (defaults to punkst repository within submodules directory of cartloader)
--n-jobs int Number of parallel jobs (default: 1)
--threads int Number of threads per job (default: 1)

1: cartloader requires the user to specify at least one action. Available actions includes: --tile to run tiling step; --segment to run segmentation step; --init-lda to run LDA training step; --decode to run decoding step; --summary to run summarization step; --main to run all above five actions.

cartloader Compilation

Generate pmtiles and web-compatible tile directories. See more details in Reference page.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
cartloader run_cartload2 \
  --makefn run_cartload2.mk \
  --fic-dir ./ficture2 \
  --out-dir ./cartload2 \
  --id ${DATA_ID} \
  --spatula ${spatula} \
  --pmtiles ${pmtiles} \
  --tippecanoe ${tippecanoe} \
  --n-jobs 10 \
  --threads 10
Parameter Required Type Description
--fic-dir required string Path to the input directory containing FICTURE2 output
--out-dir required string Path to the output directory for PMTiles and web tiles
--id required string Dataset ID used for naming outputs and metadata
--makefn string File name for the generated Makefile (default: run_cartload2.mk)
--spatula string Path to the spatula binary (default: spatula)
--pmtiles string Path to the pmtiles binary (default: pmtiles)
--tippecanoe string Path to the tippecanoe binary (default: tippecanoe)
--n-jobs int Number of parallel jobs (default: 1)
--threads int Number of threads per job (default: 1)

Upload to Data Repository

AWS Uploads

Copy the generated cartloader outputs to your designated AWS S3 catalog path:

1
2
3
4
5
cartloader upload_aws \
  --in-dir ./cartload2 \
  --s3-dir "s3://${AWS_BUCKET}/${DATA_ID}" \
  --aws ${aws} \
  --n-jobs 10
Parameter Required Type Description
--in-dir required string Path to the input directory containing the cartloader compilation output
--s3-dir required string Path to the target S3 directory for uploading
--aws string Path to the AWS CLI binary
--n-jobs int Number of parallel jobs